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Abstract. Two-dimensional degenerate Hamiltonian systems with cubic invariants are considered
using the separation of variables method. For the superintegrable Stäckel systems the cubic invariant
is rewritten in the new algebro-geometric form, that is far more elementary than the all the known
representations. A complete list of all known systems on the plane that admit a cubic invariant is
discussed.

1. Introduction

In 1935 Drach carried out the systematic study of integrable Hamiltonian systems of two
degrees of freedom with a cubic second invariant [3]. For the search for an additional
polynomial integral of motion he applied the Laplace method [8]. This direct approach leads
to a complicated set of nonlinear differential equations, whose nonlinearity has no a priori
restriction.

In [10] similar results were obtained using the Lagrangian formalism and the generalized
Noether theorem. In this method integrals of motion are obtained as solutions of another
set of second-order partial differential equations. Recently, two-dimensional Hamiltonian
systems with cubic invariants were investigated in the framework of the Maupertuis–Jacobi
geometrization procedure [7]. In this case we have to solve an over-determined system of
second-order differential equations.

Comparing all these approaches we find different final systems of differential equations.
In practice it is difficult to solve these complicated equations in general. Usually, we have to use
various simplifying additional assumptions. For instance, the Drach ansatz for the Hamilton
function H and for the second cubic invariant K

H = pxpy + U(x, y)

K = 6w(x, y)

(
∂H

∂x
py − px

∂H

∂y

)
− P(px, py, x, y)

(1.1)

yields ten integrable systems. Starting from the fixed polynomial P(px, py, x, y) the potential
U(x, y) and function w(x, y) are obtained as solutions of some system of differential
equations [3]. For the another form of the Hamilton function

H = p2
x + p2

y + V (x, y) (1.2)

partial solutions of the corresponding differential equations have been studied in [4, 6, 7, 13].
The most complete classification of known results was later brought together by Hietarinta [5].
This list of the known systems with the cubic invariant was extended in [7].
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Obviously, the Hamilton functions (1.1) and (1.2) are related by canonical transformation.
Nevertheless, here we consider both these forms of the Hamilton functions separately for an
easier comparison of results with known ones.

The aim of this paper is to study the Drach systems and some other degenerate systems on
the plane with the integrals of motion cubic in momentum using as an approach the separation
of variables, which belongs to the basic methods of classical mechanics. This method permits
us to avoid solving differential equations by construction of integrable systems with the second
cubic invariant.

Recall that using the Jacobi and Liouville ideas in 1891 Stäckel began a programme dealing
the classification of Hamiltonian systems according to their separability or nonseparability,
presenting conditions for separability of the Hamilton–Jacobi equation in orthogonal
coordinates [12]. For all the Stäckel systems integrals of motion are quadratic polynomials in
momentum. Nevertheless, we prove that eight Drach models belong to the Stäckel family of
integrable systems [12] and, moreover, seven of them are degenerate systems [10].

The system is called superintegrable or degenerate if the Hamilton function H is in the
involution with two integrals of motion I and K , such that

{H, I } = {H,K} = 0 {I,K} = J (H, I,K). (1.3)

Initial integrals and the constant of motion J (H, I,K) are generators of the polynomial
associative algebra [1, 9], whose defining relations are polynomials of a certain order in
generators.

Below we shall consider two-dimensional integrable systems with two quadratic integrals
of motion I1 = H, I2 = I and with one cubic invariant K . According to the Bernard–
Darboux theorem [21] the system with quadratic integrals I1, I2 belongs to the Stäckel family
of integrable systems [12]. We prove that for almost all the known models listed in [5, 7] the
corresponding equations of motion are linearized on the Lagrangian submanifold S1 × S2,
which is a product of two spheres S1,2. Moreover, for any dynamic splitting on the several
spheres we propose the common form for the additional cubic integral K . This representation
of the cubic integral may be applied to construct n-dimensional degenerate Stäckel systems as
well.

2. The Stäckel systems

The systems associated with the name of Stäckel [12] are holonomic systems on the phase
space R

2n equipped with the canonical variables {pj , qj }nj=1. The nondegenerate n×n Stäckel
matrix S, with entries skj depending only on qj

det S �= 0
∂skj

∂qm
= 0 j �= m

defines n functionally independent integrals of motion

Ik =
n∑

j=1

cjk(p
2
j + Uj) cjk = skj

det S
(2.1)

which are quadratic in momentum. Here C = [cjk] denotes the inverse matrix to S and skj is
the cofactor of the element skj . The common level surface of these integrals

Mα = {z ∈ R
2n : Ik(z) = αk, k = 1, . . . , n}

is diffeomorphic to the n-dimensional real torus and one immediately obtains

p2
j =

n∑
i=1

αisij (qj ) − Uj(qj ). (2.2)
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For the rational entries of S and rational potentials Uj(qj ) one obtains

p2
j =

∏k
i=1(qj − ei)

ϕ2
j (qj )

(2.3)

where ei are constants of motion and functions ϕj (qj ) depend on coordinate qj and numerical
constants [15]. The Riemann surfaces (2.3) are isomorphic to the canonical hyperelliptic
curves

Cj : µ2
j =

k∏
i=1

(λ − ei) µj = ϕ(qj )pj (2.4)

where the senior degree k of polynomial fixes the genus gj = [(k−1)/2] of the algebraic curve
Cj . Considered together, these curves determine an n-dimensional Lagrangian submanifold in
R

2n

C(n) : C1(p1, q1) × C2(p2, q2) × · · · × Cn(pn, qn).

The Abel transformation linearizes equations of motion on C(n) using first-kind Abelian
differentials on the corresponding algebraic curves [16]. The basis of first-kind Abelian
differentials is uniquely related to the Stäckel matrix S [15, 16].

Now let us turn to the superintegrable or degenerate systems in classical mechanics. One
of the main examples of the two-dimensional superintegrable systems is the isotropic harmonic
oscillator, which has many common properties with the Drach degenerate systems. Recall that
for the oscillator the Hamilton function and the second integral of motion look like

H = p2
1 + p2

2 + q2
1 + q2

2 I = p2
1 + q2

1 − p2
2 − q2

2 .

Obviously, the angular momentum

K = q1p2 − p1q2 = 1

2

(
p1

dp2

dt
− dp1

dt
p2

)
(2.5)

is the third integral of motion. Two pairs of quadratic integrals I1 = H, I2 = I and
Ĩ1 = H, Ĩ2 = K2 are associated with the following Stäckel matrices:

S =
(

1 1
1 −1

)
and S̃ =

(
1 0
r−2 1

)
r2 = x2 + y2

respectively. So, the corresponding equations of motion may be separated into different
curvilinear coordinate systems. The Stäckel systems for which the Hamilton–Jacobi equation
separates into more than one coordinate system were studied in [1, 2, 9, 11].

For all the known superintegrable Stäckel systems the number of degrees of freedomn > g

is always more than the sum of genuses gj of the corresponding algebraic curves. In this case
the number of independent first-kind Abelian differentials is insufficient for the inversion of
the Abel–Jacobi map on C(n).

To construct inversion of this map for the degenerate systems one has to complete a given
basis of the differentials to the set of n differentials. We have some freedom in a choice of
complimentary differentials and, therefore, we can associate the different Stäckel matrices
with one given Hamilton function [16]. Using first-kind Abelian differentials one obtains a
superintegrable Stäckel system with quadratic integrals only. Of course, we can try to add the
second- and third-kind Abelian differentials, but we do not know such examples.

Below we prove that for all the known degenerate systems with a cubic integral K the
number of degrees of freedom n = 2 is more then the sum g = g1 + g2 = 0 of genuses
gj = 0 of the associated Riemann surfaces (2.4). The corresponding dynamic is splitting on
two spheres

C1,2 : µ2 = α1,2λ
2 + β1,2λ + γ1,2 g1,2 = 0 (2.6)
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where αj , βj and γj are constants of motion.
In variables µ1,2 (2.4) the additional cubic integral of motion for all the degenerate Drach

systems looks like

K = det S

s21s22

(
µ1

dµ2

dt
− dµ1

dt
µ2

)
. (2.7)

This generalized ‘angular momentum’ gives rise to the first-order integrals (2.5) or the third-
order polynomials in momentum depending on the Stäckel matrices S and potentials Uj . In
our case it will be a cubic integral, which coincides with the initial Drach integral up to a
numerical factor.

To consider the nonlinear algebra of integrals of motion for the Drach systems we shall
introduce generators {N, a, a†} instead of the two quadratic integrals I1 = H, I2 = I , one
cubic integrals K and the constant of motion J (1.3). Similar to an oscillator these new
generators have the following properties:

{N, a} = a {N, a†} = −a†

{a, a†} = )(I1, I2) aa† = *(I1, I2).
(2.8)

Here generator N(I1, I2), functions *(I1, I2) and )(I1, I2) depend on the quadratic Stäckel
integrals only. Two other generators a and a† are functions of all three constants of motion
I1, I2,K , such that

K = ρ(I1, I2)(a − a†) J (I1, I2,K) = a + a†

2
.

The relations (2.8) recall the deformed oscillator algebra, which is widely used for the
superintegrable systems with quadratic integrals of motion [1, 9]. However, instead of the
usual quadratic algebra of integrals we obtain more complicated algebras of integrals. This
classical Poisson algebra may be used to construct the corresponding quantum integrals of
motion and their eigenvalues and eigenfunctions [2].

3. The Drach systems

Let us reproduce Drach’s results in his notations

(a) U = α

xy
+ βxr1yr2 + γ xr2yr1 where r2

j + 3rj + 3 = 0 (3.1)

P = (xpx − pyy)
3 w = x2y2/2

(b) U = α√
xy

+
β

(y − µx)2
+

γ (y + µx)√
xy(y − µx)2

(3.2)

P = 3(xpx − pyy)
2(px + µpy) w = xy(y − µx)

(c) U = αxy +
β

(y − ax)2
+

γ

(y + ax)2
(3.3)

P = 3(xpx − pyy)(p
2
x − a2p2

y) w = (y2 − a2x2)/2

(d) U = α√
y(x − a)

+
β√

y(x + a)
+

γ x√
x2 − a2

(3.4)

P = 3py[(xpx − pyy)
2 − a2p2

x] w = −y(x2 − a2)

(e) U = α√
xy

+
β√
x

+
γ√
y

P = 3pypx(xpx − pyy) w = −2xy (3.5)
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(f) U = αxy + βy
2x2 + c√
x2 + c

+
γ x√
x2 + c

(3.6)

P = 3p2
y(xpx − ypy) w = (x2 + c)

2

(g) U = α

(y + 3mx)2
+ β(y − 3mx) + γ (y − mx)(y − 9mx) (3.7)

P = (px + 3mpy)
2(px − 3mpy) w = −m(y + 3mx)

(h) U =
(
y +

mx

3

)−2/3
[
α + β (y − mx/3) + γ

(
y2 − 14mxy

3
+
m2x2

9

)]
(3.8)

P =
(
px − mpy

3

)(
p2
x +

10mpxpy

3
+
m2p2

y

9

)
w = −m

(
y +

mx

3

)
(k) U = αy−1/2 + βxy−1/2 + γ x P = 3p2

xpy w = −y (3.9)

(l) U = α
(
y − ρx

3

)
+ βx−1/2 + γ x−1/2(y − ρx) (3.10)

P = 3pxp
2
y + ρp3

y w = x.

Here α, β, γ , µ, ρ, a, c and m are arbitrary parameters. To compare with [3,10] we corrected
function w in the case (g) (3.7) and revised potential U in the case (k) (3.9). Namely, this
corrected Hamiltonian is in the involution with the initial Drach cubic integral K (1.1).

With an exception of three cases, (a) (3.1), (h) (3.8) and (l) (3.10), other Drach systems
are degenerate or superintegrable Stäckel systems. The separated variables associated with the
pair of quadratic integrals {I1 = H, I2} are the Stäckel variables. Equations of motion may be
integrated in quadratures [15], but these quadratures depend on the value of quadratic integral
I2. Thus, instead of the solution of the initial Drach problem related to integrals {H,K} we
can solve the associated problem with quadratic integrals {H, I2}.

In case (h) (3.8) we also have the Stäckel systems [17]. It is only in this case (h) (3.8) that
the dynamics is split on two tori and the number of degrees of freedom is equal to the sum of
genuses g = n = 2. The corresponding system is a non-degenerate integrable system.

In the case (l) (3.10) the Hamilton function coincides with the Hamiltonian of the previous
Stäckel system (3.9) at ρ = 0. Here we shall not consider this generalized Stäckel system at
ρ �= 0.

Below we shall consider the Drach integrals (1.1) up to linear transformations of the
coordinates and a rescaling of these integrals. This allows us to remove some parameters in the
Hamilton functions without loss of generality. To associate the degenerate Drach Hamiltonians
with the Stäckel matrices S we can join these systems into four pairs of systems with a common
matrix S.

3.1. Case (a)

In our previous paper [18], the first Drach system (3.1) has been related to the three-particle
periodic Toda lattice in the centre-of-mass frame. Namely, after canonical change of the time
t = qn+1 and the Hamiltonian H = pn+1 at the extended phase space

dt̃ = (xy)−1 dt H̃ = xy(H + δ)

and after further canonical transformation of other variables

x = e
q1+iq2

2 px = (p1 − ip2)e
− q1+iq2

2 y = e
q1−iq2

2 py = (p1 + ip2)e
− q1−iq2

2
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the Hamilton function (3.1) becomes

H̃ = p2
1 + p2

2 + βe− 1
2 q1−

√
3

2 q2 + γ e− 1
2 q1+

√
3

2 q2 + δeq1 + α.

This is the Hamiltonian of the tree-particle periodic Toda lattice in the centre-of-mass frame.
The separated variables survive at the change of the time. Thus, for the first Drach system
we can separate variables and integrate equations of motions in quadratures repeating the
calculations for the Toda chain [19].

Later in [13] Thompson considered this system too. In fact, after point transformation

x = reiφ px = e−iφ

2
(pr − ipφr

−1) y = re−iφ py = eiφ

2
(pr + ipφr

−1)

the Drach Hamiltonian H (1.1) looks like

H = p2
r +

p2
φ

r2
+ U(r, φ)

up to a numerical factor. This particular Hamilton function was studied in [7] and [13]. The
special substitution of the potential U(r, φ) into the Drach equations leads to the following
equation:

U(r, φ) = f (φ) + f ′′(φ)
r3

⇒ f ′′′f ′′ − 2f ′′f ′ − 3f ′f = 0

introduced in [7, 13]. Of course, the same equation follows from the functional equation on
the Toda potential [5].

3.2. Cases (b) and (e)

Put µ = 1 in (3.2). Let us introduce the Stäckel matrix

Sbe =
(
q2

1 q2
2

1 1

)
(3.11)

and take the following potentials:

(b) U1 = 2α − β − 2γ

q2
1

U2 = −2α − β + 2γ

q2
2

(e) U1 = 2α + 2(β + γ )q1 U2 = −2α − 2(β − γ )q2.

The corresponding Hamilton functions I1 (2.1) coincide with the Hamilton functions H for
the Drach systems (3.2) and (3.5), after the following canonical point transformation:

x = (q1 − q2)
2

4
px = p1 − p2

q1 − q2
y = (q1 + q2)

2

4
py = p1 + p2

q1 + q2
.

The second integrals of motion I2 (2.1) are second-order polynomials in momentum. The third
independent integrals of motion K are defined by (2.7), where

(b) µ1 = q1p1 µ2 = q2p2

(e) µ1 = p1 µ2 = p2.

From the above definitions we can introduce generators of the nonlinear algebra of
integrals (2.8) and verify properties of this algebra

(b) N = I2

4
√
H

a = J + 4
√
HK a† = J − 4

√
HK

aa† = 16(4H (β + 2γ ) − (2α + I2)
2)(4H(β − 2γ ) − (2α − I2)

2)

{a, a†} = −256
√
H(I2(I2 − 2α)(I2 + 2α) − 4H(βI2 − 4αγ ))
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and

(e) N = I2

2
√
H

a = J + 2
√
HK a† = J − 2

√
HK

aa† = −16(H (2α + I2) − (β − γ )2)(H (2α − I2) + (β + γ )2)

{a, a†} = −64H 3/2(I2H − β2 − γ 2).

3.3. Cases (c) and (g)

Put a = 1 in (3.3) and m = 1/3 in (3.7). Let us introduce the Stäckel matrix

Scg =
(

1
2 − 1

2
1 1

)
(3.12)

and take the following potentials:

(c) U1 = αq2
1

4
+

γ

q2
1

U2 = αq2

4
− β

q2
2

(g) U1 = −γ q2
1

3
+

α

q2
1

U2 = −4γ q2
2

3
− βq2.

(3.13)

The corresponding Hamilton functions I1 (2.1) coincide with the Hamilton functions H (3.3)
and (3.7), after the following canonical point transformation:

x = q1 − q2

2
px = p1 − p2 y = q1 + q2

2
py = p1 + p2.

The second integrals of motion I2 (2.1) are the second-order polynomials in momentum. The
third independent integrals K are defined by (2.7), where

(c) µ1 = q1p1 µ2 = q2p2

(g) µ1 = q1p1 µ2 = p2.

Generators and defining relations of the nonlinear algebra of integrals (2.8) look like

(c) N = I2

2
√−α

a = J + 2
√−αK a† = J − 2

√−αK

aa† = (H 2 + 4H I2 + 4I 2
2 − 4αγ )(H 2 − 4H I2 + 4I 2

2 + 4αβ)

{a, a†} = −32
√
a(I2(H − 2I2)(H + 2I2) − αβ(H + 2I2) − αγ (H − 2I2))

and

(g) N = I2

4

√
3

γ
a = J + 4

√
γ

3
K a† = J − 4

√
γ

3
K

aa† = 1
9 (8γH − 16γ I2 + 3β2)(3H 2 + 12H I2 + 12I 2

2 + 16αγ )

{aa†} = 64
(γ

3

)3/2
(
(2I2 + H)(4γH − 24γ I2 + 3b2)

4γ
− 16αγ

3

)
.

3.4. Cases (d) and (f)

Put a = 1 in (3.4) and c = 1 in (3.6). Let us introduce two Stäckel matrices

Sd =
(

1 1
1
q2

1

1
q2

2

)
Sf =

( 1
q1

1
q2

1
q2

1

1
q2

2

)
(3.14)
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and take the following potentials

(d) U1 = 2γ +
2
√

2(α + β)

q1
U2 = −2γ − 2

√
2(α − β)

q2

(f) U1 = γ

2q1
+
(α + 2β)

4
U2 = γ

2q2
+
(α − 2β)

4
.

The corresponding Hamilton functions I1 (2.1) coincide with the Hamilton functions H (3.4)
and (3.6) up to a numerical factor, after the following explicit canonical transformations:

(d) x = q2
1 + q2

2

2q1q2
px = (p1q1 − p2q2)q1q2

q2
1 − q2

2

y = q1q2 py = p1q1 + p2q2

2q1q2

(f) x = q1 − q2

2
√
q1q2

px = 2(p1q1 − p2q2)
√
q1q2

q1 + q2

y = √
q1q2 py = p1q1 + p2q2√

q1q2
.

The second integrals of motion I2 (2.1) are the quadratic polynomials in momentum. The third
independent integrals K are defined by (2.7), where for both systems one obtains

µ1 = q1p1 µ2 = q2p2.

Generators of the nonlinear algebra of integrals (2.8) are given by

N =
√
I2 a = J + 2

√
I2K a† = J − 2

√
I2K

which have the following properties:

(d) aa† = 16(I2 (2γ − H) + 2(α + β)2)(I2(2γ − H) − 2(α − β)2)

{a, a†} = 64
√
I2(I2 (2γ − H)(2γ + H) + 2(α2 + β2)H + 8αβγ )

(f) aa† = 1
16 (4I2 (α + 2β) + (γ − 2H)2)(4I2 (α − 2β) + (γ + 2H)2)

{a, a†} = −4
√
I2

(
(2β − α)(2β + α)I2 + αH 2 + 2βγH +

αγ 2

4

)
.

3.5. Cases (h) and (k)

Put m = 3 in (3.8). Let us introduce two the Stäckel matrices

Sh =
(
q1 q2

−1 1

)
Sk =

(
q1 −q2

1 1

)
(3.15)

and take the following potentials:

(h) U1 = αγ − β2

16

4γ
− 2γ q3

1

9
U2 = αγ − β2

16

4γ
− 2γ q3

2

9

(k) U1 = α + βq1 +
γ q2

1

2
U2 = −α + βq2 +

γ q2
2

2
.

The corresponding Hamilton functions I1 (2.1) coincide with the Hamilton functions H (3.8)
and (3.9) up to a numerical factor, after the following explicit canonical transformations:

(h) x = p2 − p1

4
√
γ

+
(3q1 + 3q2)

3/2

54
+

β

16γ
px = 3

p1 + p2√
3q1 + 3q2

+
√
γ (q1 − q2)
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y = −p2 − p1

4
√
γ

+
(3q1 + 3q2)

3/2

54
− β

16γ

py = 3
p1 + p2√
3q1 + 3q2

− √
γ (q1 − q2)

and

(k) x = q1 − q2

2
px = p1 − p2 y = (q1 + q2)

2

4
py = p1 + p2

q1 + q2
.

Note that in the case (h) (3.8) we used non-point canonical transformation in contrast with
other Drach systems.

In the last case (k), (3.9) the integral of motion I2 (2.1) is a second-order polynomial in
momentum. The third independent integral K is defined by (2.7), where

µ1 = p1 and µ2 = p2.

Generators and defining relations of the nonlinear algebra of integrals (2.8) look like

(k) N = I2√−2γ
a = J +

√
−2γK a† = J −

√
−2γK

aa† = (2γ (I2 + α) + (H + β)2)(2γ (I2 − α) + (H − β)2)

{a, a†} = −4γ
√−2c(H 2 + 2γ I2 + β2).

In the case (h) (3.8) the second integral of motion I2 (2.1) is the second-order polynomial
in momentum {p1, p2}. However, after the non-point transformation of variables this integral
I2 becomes the {px, py} Drach integral K (3.8) cubic in momentum. The corresponding
dynamics is split on two tori and the third-order polynomial (2.7) does not commute with the
Hamilton function. Later this system was rediscovered by Holt [6].

4. Other degenerate systems on the plane with a cubic integral of motion

In this section we consider the Stäckel systems on the plane with a cubic integral of motion
defined by the following Hamilton function:

H = 1
2 (p

2
x + p2

y) + V (x, y).

As above, the corresponding cubic integral will be written in the Drach form (1.1).
On the plane we know four orthogonal systems of coordinates: elliptic, parabolic, polar

and Cartesian. Thus, we reproduce all the known results [5,7] in correspondence with the type
of the associated Stäckel matrix [15, 16].

The systems whose Hamilton functions are separable in Cartesian coordinates:

(A) V = α(4x2 + y2) + βx +
γ

y2
(4.1)

P = pxp
2
y − w = y

6

(B) V = α(x2 + y2) +
β

x2
+

γ

y2
(4.2)

P = (xpy − ypx)pxpy − w = xy

6

(C) V = α(x2 + y2) + β
xy

(x2 − y2)2
(4.3)

P = (x py − ypx)(p
2
x − p2

y) − w = x2 − y2

6
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(D) V = α(9x2 + y2) (4.4)

P = (xpy − pxy)p
2
y − w = −y2

18
.

The systems whose Hamilton functions are separable in parabolic coordinates:

(F) V =
(
α +

β

r + x
+

γ

r − x

)
r−1 r =

√
x2 + y2 (4.5)

P = (xpy − pxy)
2px − w = yr2

12

(G) V =
(
α +

βx

y2

)
r−1 (4.6)

P = (xpy − pxy)
2px − w = yr2

12
(H) V = (

α + β
√
r + x + γ

√
r − x

)
r−1 (4.7)

P = (xpy − pxy)

(
2p2

x + 2p2
y − β√

r + x
− γ√

r − x

)
− w = − r2

6
.

One system with the Hamilton function separable in polar coordinates:

(I) V = α +
β√

x2 + y2
+

ρ

(δx + γ y)2
+

γ x − δy√
x2 + y2(δx + γy)2

(4.8)

P = (pxy − pyx)(γpx − δpy) w = (x2 + y2)(δx + γy)

12
.

This is a new superintegrable system with a cubic integral of motion, which was not obtained
in the framework of the direct approach [4–6] or the Maupertuis–Jacobi procedure [7].

Three exceptional systems whose cubic integral of motion K we cannot rewrite in the
‘generalized angular momentum’ form (2.7):

(K) V = α
√
x ± β

√
y P = β

α
p3
x ∓ α

β
p3
y w = √

xy (4.9)

(L) V = α(
√
x + βy) P = p3

x w = −
√
x

2β
(4.10)

(M) V = f ′(φ)r−2 (4.11)

K = p2
φ(cosφpr − sin φr−1pφ) + (2f ′(φ) cosφ

− f (φ) sin(φ))pr + (3f ′(φ) sin φ + f (φ) cosφ)r−1pφ.

For the case (M) (4.11) we used the standard polar coordinates {r, pr, φ, pφ} and the function
f (φ) has to satisfy the following equation:

f ′′(3f ′ sin φ + f cosφ) + 2f ′(2f ′ cosφ − f sin φ) = 0.

For these exceptional cases the Hamilton functions (4.9)–(4.11) are separable in the Cartesian
and polar coordinates, respectively. Note that the corresponding Stäckel potentials U1,2 are
algebraic or trigonometric functions in separated variables.

4.1. Cartesian coordinates, cases (A)–(D)

Let us introduce the Stäckel matrix

S(A)–(D) =
(

1
2

1
2

1 −1

)
(4.12)
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and take the following potentials:

(A) U1 = 8αq2
1 + 2βq1 U2 = 2αq2

2 +
2γ

q2
2

(B) U1 = 2αq2
1 +

2β

q2
1

U2 = 2αq2
2 +

2γ

q2
2

(C) U1 = αq2
1

2
− β

4q2
1

U2 = αq2
2

2
+

β

4q2
2

(D) U1 = 18α q2
1 U2 = 2αq2

2 .

(4.13)

The corresponding Hamilton functions I1 (2.1) coincide with the Hamilton functions
H (4.1), (4.2)–(4.4) if

(A)–(B), (D) x = q1 y = q2

or after the following canonical transformation:

(C) x = q1 − q2

2
px = p1 − p2 y = q1 + q2

2
py = p1 + p2.

The second integrals of motion I2 (2.1) are second-order polynomials in momentum. The third
independent integrals K are calculated by (2.7), where variables

(A) µ1 = p1 µ2 = q2p2 (B)–(C) µ1 = q1p1 µ2 = q2p2

determine the left-hand side of the canonical algebraic curves (2.4). In case (D) the variables

(D) µ1 = p2q1 − p1q2

3
µ2 = p2q2

donot have such a natural algebro-geometric meaning.
Generators and defining relations of the nonlinear algebra of integrals (2.8) look like

(A)–(B) N = I2

4
√−2α

a = J + 4
√−2αK a† = J − 4

√−2αK

such that

(A) aa† = 4(4α(2I2 + H) + β2)((2I2 − H)2 − 64αγ )

{a, a†} = −128α
√−2α

(
(2I2 − H)

(
6I2 + H +

β2

2α

)
− 64αγ

)
(B) aa† = ((2I2 + H)2 − 64αβ)((2I2 − H)2 − 64αγ )

{a, a†} = −16
√−2α(((2I2 − H)2 − 64αγ )(2I2 + H)

+ ((2I2 + H)2 − 64αβ)(2I2 − H)).

For the two last cases we have

(C) N = I2

2
√−2α

a = J + 2
√−2αK a† = J − 2

√−2αK

aa† = ((2I2 − H)2 − 2αβ)((2I2 + H)2 + 2αβ)

{a, a†} = −8
√−2α(((2I2 − H)2 − 2αβ)(2I2 + H)

+ ((2I2 + H)2 + 2αβ)(2I2 − H))

and

(D) N = I2

6
√−2α

a = J + 6
√−2αK a† = J − 6

√−2αK

aa† = −4(2I2 − H)3(2I2 + H)

{a, a†} = −96
√−2α(2I2 − H)2(4I2 + H).

For case (D) (4.4) the quantum counterpart of this cubic deformed oscillator algebra has been
used to study the corresponding quantum superintegrable system [1].
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4.2. Parabolic coordinates, cases (F)–(H)

Let us introduce two Stäckel matrices

S(F),(G) =
(

1 1
q−1

1 q−1
2

)
S(H) =

(
q2

1 q2
2

1 1

)
(4.14)

and take the following potentials:

(F) U1 = − α

2q1
− β

2q2
1

U2 = α

2q2
− γ

2q2
2

(G) U1 = α

2q1
− β

4q2
1

U2 = − α

2q2
+

β

4q2
2

(H) U1 = −4α − 8
√

2βq1 U2 = 4α + 8
√−2γ q2.

(4.15)

The corresponding Hamilton functions I1 (2.1) coincide with the Hamilton functions
H (4.1), (4.2) and (4.3) after the following canonical point transformations:

(F), (G) x = q1 + q2 px = p1q2 − p2q2

q1 − q2

y = 2
√−q1q2 py = (p1 − p2)

√−q1q2

q1 − q2

and

(H) x = q2
1 + q2

2 px = 1

2

p1q1 − p2q2

q2
1 − q2

2

y = 2iq1q2 py = i

2

p1q2 − p2q1

q2
1 − q2

2

.

The second integrals of motion I2 (2.1) are second-order polynomials in momentum. The third
independent integrals K are calculated by (2.7), where variables

(F), (G) µ1 = q1p1 µ2 = q2p2 (H) µ1 = p1 µ2 = p2

define the left-hand side of the canonical algebraic curves (2.4).
For all these cases (F), (G) and (H) the generators and defining relations of the nonlinear

algebra of integrals (2.8) look like

(F)–(H) N = I2

2
√
H

a = J + 2
√
HK a† = J − 2

√
HK

such that

(F) aa† = 1
16 (8βH − (2I2 + α)2)(8γH − (2I2 − α)2)

{a, a†} = −2
√
H(I2(2I2 + α)(2I2 − α) − 2H(β(2I2 − α) + γ (2I2 + α)))

(G) aa† = − 1
16 (4β H + (2I2 + α)2)(4β H − (2I2 − α)2)

{a, a†} = 2
√
H(I2(2I2 + α)(2I2 − α) − 2αβH)

(H) aa† = 16(H(I2 − 4α) + 32γ 2)(H(I2 + 4α) − 32β2)

{a, a†} = −64H 3/2(HI2 − 16β2 + 16γ 2).

4.3. Polar coordinates, case (I)

Let us introduce the Stäckel matrix

S(I) =
(

1 0
q−2

1 1

)
(4.16)
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and take the following potentials:

(I) U1 = α +
β

q1
U2 = γ cos(q2) − δ sin(q2) + ρ

(δ cos(q2) + γ sin(q2))2
. (4.17)

The corresponding Hamilton function I1 (2.1) coincides with the Hamilton function H (4.8)
if q1 = r and q2 = φ are the standard polar coordinates on the plane. The second integrals
of motion I2 (2.1) are the second-order polynomials in momentum. The third independent
integrals K are calculated by (2.7), where variables

(I) µ1 = p1 µ2 = p2(δ cos(q2) + γ sin(q2))

define the canonical algebraic curves (2.4).
For δ = 1 and γ = 0 the generators and defining relations of the nonlinear algebra of

integrals (2.8) look like

(H) N = −
√

−I2 a = J + 2
√

−I2K a† = J − 2
√

−I2K

aa† = (4HI2 − 4αI2 + β2)(4I 2
2 − 4ρI2 + 1)

{a, a†} = −8
√

−I2((2 I2 − ρ)β2 + (12I 2
2 − 8ρI2 + 1)(H − α)). (4.18)

This system is not contained in the list of known integrable systems [5,7]. For the cases (I) (4.8)
and (M) (4.11) we have a common leading part P of the cubic integrals K . However, for the
case (M) we cannot rewrite the cubic integral in the ‘generalized angular momentum’ form.

5. The Lax representation

In [15,16] we proposed some constructions of the 2 × 2 Lax matrices for the Stäckel systems
with homogeneous Stäckel matrices [16] and with uniform potentials Uj = U . The Drach–
Stäckel systems are not contained in this subset of the Stäckel systems. Nevertheless, we could
construct the 2 × 2 Lax matrices for these systems using various coverings [15] of the initial
spheres C1,2 (2.6).

Here we consider the 4 × 4 Lax matrices for some Drach systems by using canonical
transformations of the extended phase space, which induce transformations of the Lax
matrices [16, 18]. Recall that if the Stäckel matrices S and S̃ are distinguished in the first
row only, the corresponding Stäckel systems are related by a canonical change of the time
qn+1 = t and conjugated momentum pn+1 = −H [16]

t �→ t̃ dt̃ = det S̃

det S
dt H �→ H̃ = det S

det S̃
H. (5.1)

Thus, starting with the Stäckel systems related to matrix S = Scg (3.12) we can study systems
associated with matrices S̃ = Sbe (3.11) and S̃ = Sk (3.15). Here subscripts mean the type
of Stäckel matrix for the different Drach systems.

The Stäckel systems with the constant matrix Scg possess the following 4 × 4 Lax
matrices [15, 20]:

L(λ) =
(
L1(λ, p1, q1) 0

0 L2(λ, p2, q2)

)
(5.2)

with independent 2 × 2 non-trivial blocks Lj(λ). For instance, two standard blocks may be
chosen

Lj(λ) =
(

pj λ − qj

−
[

φj
λ−qj

]
MN

−pj

)
Lj(λ) =


pj qj
λ

1 − q2
j

λ

p2
j

λ
−
[

φj

1− q2
j

λ

]
MN

−pj qj
λ

 .
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Hereφ(λ) is a parametric function on spectral parameter λ and [ξ ]N are the linear combinations
of the Laurent projections [15].

According to [16, 18], canonical transformations of the extended phase space induce a
shift of the Lax matrices depending on the Hamilton function. Thus, using one known Lax
matrix L(λ) (5.2) we can construct another Lax matrix. Namely, canonical transformations of
the time (5.1) give rise to the following shift of the corresponding Lax matrices:

L̃(λ) = L(λ) − H̃


0 0 0 0
a 0 0 0
0 0 0 0
0 0 b 0

 a, b = ±1 or ± i (5.3)

where values of the constants a, b depend on the chosen form of the blocks Lj(λ).
Below we present some Lax matrices constructed by the scheme designated above. In

case (c) the Lax matrix is given by

Lc(λ) =


p1 λ − q1 0 0

(λ + q1)
(− α

4 + γ q2
1λ

2
) −p1 0 0

0 0 ip2 i(λ − q2)

0 0 i(λ + q2)
(− α

4 − βq2
2λ

2
) −ip2


so the spectral curve

4(λ,µ) : det(Lc(λ) − µI) = 0

is a product (
µ2 − I1

2
− I2 +

αλ2

4
+

γ

λ2

)(
µ2 − I1

2
+ I2 − αλ2

4
+

β

λ2

)
= 0

of the corresponding canonical Stäckel curves (2.6).
In the case (k) the Lax matrix is given by

L̃k =


p1 λ − q1 0 0

− γ (λ+q1)

2 − β −p1 0 0
0 0 ip2 i(λ + q2)

0 0 iγ (λ−q2)

2 + iβ −ip2

 + H̃


0 0 0 0
1 0 0 0
0 0 0 0
0 0 i 0


where H̃ = I1 is the Hamilton function (3.9). As in the previous example the spectral curve(

µ2 − γ λ2

2
+ (β + I1)λ + α + I2

)(
µ2 +

γ λ2

2
+ (β − I1)λ + α − I2

)
= 0

is a product of the corresponding Stäckel curves (2.6).
In case (b) the Lax matrix is given by

L̃b =


p1q1

λ
1 − q2

1
λ

0 0
p2

1−(β−2γ )q−2
1

λ
−p1q1

λ
0 0

0 0 p2q2

λ
1 + q2

2
λ

0 0 −p2
2+(β+2γ )q−2

2
λ

−p2q2

λ

 + H̃


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


where H̃ = I1 is the Hamilton function (3.2). The corresponding spectral curve

4(y, µ) : det(L̃b(λ) − yI) = 0

is a product (
y2 − I1 +

2α + I2

λ
− β + 2γ

λ2

)(
y2 − I1 +

2α − I2

λ
− β − 2γ

λ2

)
= 0
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of the initial Stäckel curves (2.3), which could be rewritten in the canonical form (2.6).
All the spectral curves of these 4×4 Lax matrices Lc, L̃k and L̃b give rise to the quadratic

Stäckel integrals I1,2 (2.1). The third integral K (2.7) may be extracted from the same matrices
using multivariable universal enveloping algebras [15]. In fact, this integral is a coefficient of
the following multivariable polynomial:

tr PπL(λ1) ⊗ L(λ2) ⊗ L(λ3) ⊗ L(λ4) (5.4)

where Pπ is a permutation operator of auxiliary spaces corresponding to a Young diagram
π [15]. The nonlinear algebra of integrals (2.8) may be reproduced using the Poisson bracket
relations between the Lax matrices ⊗k

jL(λj ) [15]. The formulae (5.4) for the 256 × 256
matrices have been proved using the computer algebra system Maple V.

6. Conclusion

Let us discuss the list of all the known integrable natural Hamiltonian systems in the plane
with a cubic integral [3, 5, 7]. We suppose that all these systems may be embedded into
the family of the Stäckel systems [16]: either they may be embedded into the subset of the
generalized Stäckel systems [18] or they may be related to the Toda lattices and the Calogero–
Moser systems [5, 18]. As an example the last case (l) (3.10) of the Drach systems and the
Fokas–Lagerstrom [4] model belong to the generalized Stäckel systems [18]. The complete
classification will be presented in a forthcoming publication.

In this paper we proved this proposition for all the Drach systems [3]. Moreover, we
rewrite the cubic integrals for the superintegrable Drach systems in the common form (2.7).
This generalized ‘angular momentum’ may be used to construct another n-dimensional
superintegrable Stäckel system with cubic integrals of motion. For instance, let us consider
the Hamilton function

H = 1

2
(p2

x + p2
y + p2

z ) +
γ + δ

r
+

1

x2 + y2

(
α(r − z)

r
+
β(r + z)

r
+ U

(y
x

))
(6.1)

where r =
√
x2 + y2 + z2 and U(y/x) is an arbitrary function. The corresponding equations

of motion are separable in the parabolic coordinates

q1 = r + z q2 = r − z q3 = arctan(y/x)

which are related to the following Stäckel matrix:

S =
( 1 1 0
q−1

1 q−1
2 0

q−2
1 q−2

2 −4

)
.

The Hamilton function (6.1) coincides with the Stäckel integral I1 (2.1) if

U1 = α

q2
1

+
γ

q1
U2 = β

q2
2

+
δ

q2
U3 = U(q3).

Thus we have an integrable Stäckel system with the independent integrals of motion I1,2 and
I3, which are quadratic polynomials in momentum.

Canonical algebraic curves are defined in variables

µ1 = p1q1 µ2 = p2q2 µ3 = p3.

To substitute these variables in the ‘generalized angular momentum’ (2.7) one obtains an
additional integral of motion K cubic in momentum. In the initial physical variables this
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integral K looks like

K = (x2 + y2)p3
z − 2zp2

z (pxx + pyy) − pz(pxx + pyy)
2

+r2

(
∂H

∂z
(pxx + pyy) + pz

(
p2
x + p2

y − x
∂H

∂x
− y

∂H

∂y

))
.

It will be interesting to understand the algebro-geometric origin of this ‘generalized angular
momentum’ (2.7).
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